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ABSTRACT

Introduction: Polypharmacy is a growing
problem in the United States. The use of mul-
tiple medications increases the likelihood that a
patient will experience potential drug interac-
tions and adverse drug reactions (ADRs). Those
individuals with dementia or Alzheimer’s dis-
ease (AD) are at greater risk, due to age,
comorbidities, and an increased likelihood of
being on a greater number of neuroactive
medications.
Methods: uMETHOD Health (uMH) has devel-
oped a precision medicine platform to address
dementia and mild AD through the creation of
personalized, multidomain treatment plans.
Many interactions and ADRs may be observed,
such as drug–drug interactions (DDIs), drug–
gene interactions (DGIs), anticholinergic cog-
nitive burden (ACB), and depression-inducing
drugs (DIDs). uMH’s algorithms can parse these
interactions, rate them based on input from
open-source databases, and then record all these

interactions in a generated treatment plan. A
total of 295 individuals aged 65 and older were
included in this analysis.
Results: Of 295 individuals, 97.59% were on at
least one medication, with an overall mean of
11.5 medications per person; 83.66% were on
five or more medications. A total of 102 DGIs,
3642 DDIs, and one high-priority DDI were
found in this population. There was a signifi-
cant increase in the number of DDIs as medi-
cations per person increased (P value\ 0.0001).
Of the population, 65.86% were on one or more
anticholinergic drugs. There was a significant
difference in the ACB score between individuals
with cognitive decline and those without. In
total, 60.98% of the overall population were on
DIDs, with a mean of 1.19 medications per
person.
Conclusions: The results of this work show that
older populations have a high medication bur-
den. With the growing elderly and AD popula-
tions, medication management for
polypharmacy is a need that grows direr every
year. uMH’s platform was able to identify a
multitude of polypharmacy problems that
individuals are currently facing.
Funding: uMETHOD Health.
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INTRODUCTION

Polypharmacy, defined as the use of five or
more medications [1], is a growing problem in
the United States [2]. Medication regimes com-
prised of multiple medications increase the
likelihood that a patient will experience
potential drug interactions and adverse drug
reactions (ADRs) [3]. ADRs place many patients
in the hospital every year and can have life-
threatening consequences. They are among the
top ten leading causes of death [2, 4].

These risks are even higher for the elderly,
due to age-related changes of pharmacokinetics
(PK) and pharmacodynamics (PD) of many
drugs. Changes in PK and PD are related to an
overall decrease in total body water which
decreases the spread of hydrophilic drugs,
increasing body fat that in turn increases the
distribution of lipophilic drugs, and a break-
down in the blood–brain barrier that results in a
higher distribution of drugs that affect the
central nervous system [3]. Moreover, age-re-
lated diseases can further change patients’ PK
and PD by increasing sensitivity to drug effects
and thus increasing their susceptibility to ADRs.

Among those taking any prescription medi-
cation, half are exposed to two or more drugs
with 5% exposed to eight or more [2]. This high
rate of multiple medications is driven in large
part by people who have multiple chronic
conditions. Approximately half of the US pop-
ulation has at least one chronic condition, and
one in four have multiple [5]. Those individuals
with dementia or Alzheimer’s disease (AD) are
also at greater risk due to age, an increased
number of comorbidities, and an increased
likelihood of being on a greater number of
neuroactive medications. In one study, only
8.7% of AD patients did not have a physical
condition, compared to 15.9% of controls [6].

AD is a progressive neurodegenerative con-
dition in which individuals exhibit memory
loss, dementia, and impaired metabolism. It is
commonly a late-onset disease, with symptoms
developing around the age of 65. AD is one of
the most common forms of dementia,
accounting for 50–80% of all dementia cases [7]
and is a growing economic and social burden

[8, 9]. Early symptoms include difficulty in
recalling recent events, personality changes,
trouble with problem-solving, and confusion.
As the disease progresses, symptoms include
mood swings, irritability, aggression, trouble
with language, and long-term memory loss. In
the late stages of AD, bodily functions are lost,
leading to death. Life expectancy after diagnosis
is 7 years [7]. Comorbidity and polypharmacy
are both associated with worsening cognition,
functional ability, and survival for patients with
dementia [6].

AD patients may be at greater risk for ADRs
when it comes to neuroactive drugs compared
to a normal elderly population, due to the
neurological damage that is characteristic of the
disease. According to Dr. Pasqualetti at the
University of Pisa, ‘‘the impaired neurotrans-
mission in AD patients represents the major
pharmacological target (especially cholinergic
system) for disease treatment, it might also
represent a point of weakness for AD patients’’
[3].

Both chronic diseases and medication num-
bers increase when considering a population
that is 65 and older. Polypharmacy has been
shown to be a statistically significant predictor
of hospitalization, nursing home placement,
death, hypoglycemia, fractures, impaired
mobility, pneumonia, and malnutrition for
older populations [10]. In the United States,
30% of adults over 65 take 5 or more medica-
tions [2].

Each drug has the potential to cause side
effects and adverse events, but drugs also
interact. These interactions can be so minor as
to be recommended to ignore, or they can be
very serious, with the potential for death with
concurrent use [11]. Interactions and adverse
events can arise from multiple factors, includ-
ing drug–drug interaction (DDI), drug–genome
interaction (DGI), anticholinergic burden
(ACB), and depression-inducing drugs (DIDs),
creating new risks for the patient with each
additional medication. Indeed, the inability of
patients and providers alike to distinguish drug-
induced symptoms from new disease symptoms
often results in the addition of more medica-
tions to treat drug-induced symptoms, further
increasing the risk of DDIs and ADRs [3].

Neurol Ther



DDIs occur when individuals are exposed to
medications that interact to produce an unde-
sirable result. They fall into two categories: PK
and PD interactions [12]. Exposure to potential
DDIs does not always result in a direct adverse
drug event or measurable clinical effect, but
they can have an additive effect [12, 13]. As
Katie Quinn of Stanford University states in ‘‘A
dataset quantifying polypharmacy in the Uni-
ted States,’’ ‘‘exposure to multiple drugs puts
patients at additive risk of each single drug’s
potential adverse outcomes’’ [2].

Genetic factors also affect the PK and PD of
drugs, altering patients’ response [14–16]. In
recent years, databases have been created to
track and aid in the study of DGIs. This has
become known as the ‘‘druggable genome,’’ and
is defined as ‘‘genes or gene products that are
known or predicted to interact with drugs, ide-
ally with a therapeutic benefit to patients’’ [14].

Anticholinergic drugs block the neurotrans-
mitter acetylcholine in the central and periph-
eral nervous systems. They are indicated for use
in many different disease states, including
depression, gastrointestinal disorders, Parkin-
son’s disease, urinary incontinence, epilepsy,
and seasonal allergies [17]. In fact, many com-
monly used drugs have anticholinergic proper-
ties, including over-the-counter-medications.
These drugs are widely available and include
antihistamines, drugs to reduce frequency of
urination, and medications for sleep distur-
bances. The availability and number of non-
prescription drugs with anticholinergic proper-
ties is increasing in recent years [18]. The
cumulative effect of taking multiple medica-
tions with anticholinergic properties is referred
to as ACB [19].

Many studies have shown that anticholiner-
gic drugs can adversely impact cognition,
physical function, cause dizziness, delirium,
confusion, falls, and increase the risk of mor-
tality in elderly populations [19, 20]. ACB has
also been shown to be a risk factor for devel-
oping mild cognitive impairment (MCI) and
dementia [17, 21–23]. Each definite anticholin-
ergic drug has the potential to increase the risk
of cognitive impairment by 46% over 6 years
[21]. In addition, the odds ratio for a diagnosis
of MCI was 2.73 for adults exposed to at least 3

anticholinergics for a minimum of 90 days. The
odds ratio for dementia was 0.43 [22].

Many cognitively impaired and AD patients
are simultaneously taking cholinesterase inhi-
bitors along with anticholinergic drugs. Cho-
linesterase inhibitors are one of the most
prescribed drugs types for dementia and AD
patients [24]. One study showed that 35.4% of
patients received these two drug types in com-
bination [25]. The use of these medications in
combination is likely to decrease their phar-
macological benefit as they counteract each
other [26], making their simultaneous use sel-
domly appropriate due to the drugs’ invalidat-
ing pharmacological effect [25].

Guidelines such as Beers and the Screening
Tool of Older Persons’ potentially inappropriate
Prescriptions (STOPP) both state that the use of
anticholinergic drugs should be avoided in
older populations [17, 23]. Even with these
accepted guidelines, physicians often prescribe
these medications for their anticipated thera-
peutic outcomes, overlooking the possible risks
[19].

Anticholinergic drugs are also one of the
most commonly prescribed DIDs. Numerous
medications and medication classes have been
classified as depression-inducing. Other com-
mon DIDs include sedative-hypnotics and
analgesics [27, 28]. Drug-induced depression is
more likely to occur in individuals who have a
higher risk factor for depressive disorder [29], as
may be the case for individuals with the APOE
e4 allele and AD patients.

An increase in drug-induced depression is
another result of the increasing occurrence of
polypharmacy [30]. Many studies that identify
potential DIDs are observational in nature, and
results have been contradictory. Nevertheless,
DIDs should be considered as a potential cause
when new symptoms of depression occur [31].

The elderly are less likely to recognize ADRs
for what they are and can even be more likely to
have their concerns dismissed by medical pro-
viders. Elderly people often have lower expec-
tations for what their health should be, and are
therefore less likely to let their physician know
when they are experiencing new issues. Those
with cognitive impairment may also be unable
to recognize new symptoms or may have
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difficulty communicating them. In some cases,
ADRs are mistaken for the consequences of old
age [18].

The aging population along with the number
of people diagnosed with AD are quickly grow-
ing in the United States. It is estimated that by
2030, more than 20% of all US residents will be
65 or older, compared with just 13% in 2010
[32].

With the quick growth of these populations
and the ever-increasing number of drugs avail-
able on the market, medication management is
necessary, but too complex to be handled by a
single physician. We propose that clinical
decision support software (CDSS) with
machine-learning algorithms should be
employed in this complicated space to increase
physician effectiveness and patient safety.

CDSS is software created to provide treat-
ment decision support to medical professionals.
CDSS can process large amounts of information
in a quick and effective manner, creating
actionable recommendations to improve clini-
cal decision-making [33, 34]. Because of this
ability, the guidance provided is patient-specific
instead of generalized [34]. The output of CDSS
contains guidance on the diagnosis, treatment,
prevention, cure, or mitigation of disease [35].

Machine learning enables the CDSS plat-
forms to make successful predictions based on
past experiences [36, 37]. There may be dozens
of issues identified for one patient, so decision-
theory techniques can be used to assign
weights, priorities, and strategies to the issues.
Next, interventions are selected. These inter-
ventions have a wide range of costs, including
financial costs, pain, and effort by the person
being treated which should be taken into
account by the CDSS platform. Many interac-
tions may be observed, such as DDIs, DGIs, and
drug-to-diet interactions. Algorithms determine
an appropriate path forward, given the many
potential conflicts.

This method would enable physicians to
have access to an automated, repeatable, and
reliable analysis that can be applied to every
patient, is based on the latest clinical guidelines,
and is personalized to the individual. It can
process copious amounts of information
quickly, making it useful in a clinical setting.

METHODS

Population Overview

A total of 295 individuals were included in this
analysis. All of the data presented here was pre-
viously collected for the purposes of creating
treatment plans for patients with a family history
of AD, with mild cognitive decline, or mild AD.

Following the guidelines put forth in the
21st Century Cures Act [35], CDSS is not regu-
lated by the US Food and Drug Administration
(FDA), and uMETHOD Health’s (uMH) treat-
ment protocol does not include any investiga-
tional drugs. Because of this, uMH’s precision
medicine platform was taken straight to market
and did not need an approval by an ethics
committee or board.

When participants were enrolled for the
treatment plan, uMH obtained permission from
every individual to use their data for future
research purposes, in compliance with ethics
guidelines. uMH’s Terms and Conditions for the
commercially available treatment plan outlined
that data would be saved and used only in a de-
identified manner.

Each participant receiving a treatment plan
accessed an online consent form or was given a
printed version if access was an issue, outlining
uMH’s Terms and Conditions for the commer-
cially available treatment plan. Individuals who
presented with cognitive decline were encour-
aged by uMH and their physician to have a
caretaker or family member review all docu-
ments and consent forms before signing.

Before initial enrollment, all individuals
were first evaluated by a physician to ensure
they were a good fit for the program. Cognitive
testing was done at baseline and these results
were used to classify the individuals as either
cognitively normal or demented. Cut-off scores
for dementia classification followed the
University of Ohio’s validity and normality data
for the Self-administered Gerocognitive Exami-
nation (SAGE) with a score of 17–22 considered
normal cognition [38, 39].

uMH’s algorithm platform automatically
assigns every participant a random eight-char-
acter ID when they are first entered into the

Neurol Ther



system to de-identify their information. All data
was collected under their randomly assigned ID,
and the investigators here only had access to
this de-identified information.

Following the guidelines set out by ‘‘Coded
Private Information or Specimens Use in
Research’’ by the Office for Human Research
Protection [40], since the data presented here
was not collected for the currently proposed
polypharmacy research project and no investi-
gator could ascertain the identity of the indi-
viduals, the data presented here is not classified
as involving human subjects.

Institutional review board approval was not
required as data are recorded in such a manner
that subjects cannot be identified, directly or
through identifiers linked to the subjects.
Meeting these conditions makes this research
exempt from the requirements of 45 CFR 46
under the Department of Health and Human
Services (HHS): Research, involving the collec-
tion or study of existing data, documents,
records, pathological specimens, if these sources
are publicly available or if the information is
recorded by the investigator in such a manner
that subjects cannot be identified, directly or
through identifiers linked to the subjects.

For the purposes of this analysis, only indi-
viduals who were aged 65 and older were
included. Our population was 55.25% female
(n = 163). See Tables 1 and 2 for a full analysis of
the research cohort.

Bioinformatics Platform

uMH has developed a precision medicine plat-
form to address dementia and mild AD through
the creation of personalized, multidomain

treatment plans [41]. Large data sets are col-
lected and analyzed for each patient to generate
a treatment plan. Each treatment plan is
reviewed by a trained physician before being
delivered to the patient. uMH’s platform iden-
tifies and addresses active issues, and creates
repeatable and practical treatment plans for use
in doctors’ practice.

Many interactions and ADRs may be
observed, such as DDIs, DGIs, ACB, as well as
DIDs. uMH’s algorithms can parse these inter-
actions, rate them based on input from open-
source databases, and then record all these
interactions in the person’s generated treatment
plan. This allows a physician to easily review
and amend a patient’s medication regime.

The internal software of the bioinformatics
platform is written in the Python language. It
interfaces to an external portal, used by the
medical, care, and coaching teams to gather

Table 1 Population overview

Variable Mean Standard deviation Minimum Maximum

Age (years) 75.51 7.31 64.92 102.46

Education (years) 16.11 3.48 5 24

BMI 26.45 5.17 17.4 45.9

Total medications 11.53 8.83 0 67

SAGE score 16.23 4.60 0 22

BMI body mass index, SAGE Self-administered Gerocognitive Examination

Table 2 Cognitive status

Cohort Cognitive state Frequency % of population

All Normal 109 49.1

MCI 91 41

AD 22 9.91

Female Normal 52 43.3

MCI 56 46.7

AD 12 10

Male Normal 57 55.9

MCI 35 34.3

AD 10 9.8

MCI mild cognitive impairment, AD Alzheimer’s disease
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input and return reports written in PHP and
Java. External medical databases support the
internal rules-processing algorithms. These are
sourced from bodies such as the National
Institutes of Health (NIH), FDA, pharmaceutical
trade groups, and consortia focused on topics
such as genetics or allergies.

The initial data input for a person is often
about one million data points. This count can
vary (generally upwards), depending on several
input categories: (1) the completeness of the
genetic exome data, (2) the resolution and
number of images and image files, (3) the number
of historical biospecimen lab results and cogni-
tive assessments, (4) the granularity and history
of wearable data samples, and (5) any attached
photos, scans, and faxes. Natural language pro-
cessing (NLP) techniques are used throughout
the input steps, particularly for precise identifi-
cation of lab tests, medications, drug indications,
and comorbidities. A range of NLP techniques are
employed to normalize input data.

The algorithms that implement this infor-
mation platform go through a consistent set of
steps each time they load a person’s input to
generate a new set of reports. These steps are
rules-based, so the logic and evidence sources
can be tracked (and evaluated). When ADRs are
determined, the issues are described in detail,
and the physician and care team are alerted.

Every word in every report is generated by
the bioinformatics algorithms. Natural lan-
guage generation (NLG) techniques assure all
text, tables, and images are human-readable, in
high-quality natural language (such as Ameri-
can English). Multiple versions of the reports
are generated suited to the presumed education
(e.g., physician), reading ability (e.g., those
under treatment and their caregivers), and
vocabulary (e.g., dietitian, coach, physical
therapist) of the readers.

Input

Data was collected using either paper forms or
uMH’s online portal depending on the indi-
vidual’s computer skills and access.

Personal medical histories were gathered from
forms completed by the individual or their care-
giver. This information includes current

medications, nutraceuticals, over-the-counter
drugs, comorbidities, past procedures and surg-
eries, allergies, imaging such as MRI, EEG, or PET
scans, immunization history, and family history
of dementia or cardiovascular conditions.

Lifestyle data, information on sleep, diet,
stress, educational attainment, physical activ-
ity, quality of life, activities of daily vitals, and
biometrics were also supplied by the individual,
their caregiver, and/or the physician.

Measures

All medications, including prescriptions, vita-
mins, and over-the-counter drugs, reported were
counted toward each person’s total medication
number. Three medication categories were cho-
sen for statistical analysis due to their large
prevalence, and in some cases accepted guidelines
for avoidance, in older and AD populations: neu-
roactive medications, anticholinergics, and DIDs.

Drug–Drug Interactions

Information on each person’s current medica-
tion regimes was collected through uMH’s
patient questionnaires or supplied by physicians.

uMH’s CDSS platform utilized existing
national databases to determine interactions.
DDIs were determined using the NIH RxNorm
database, including the ‘‘ONC High’’ subset
(ONC is the Office of the National Coordinator
for Health Information Technology). The
RxNorm database is a normalized naming system
for generic and brand-name drugs produced by
the National Library of Medicine [42]. The
RxNorm system is used by hospitals, pharmacies,
and other organizations nationwide to record
and process drug information through computer
systems. The goal of RxNorm ‘‘is to allow com-
puter systems to communicate drug-related
information efficiently and unambiguously.’’
The RxNorm database covers clinical drugs and
drug packs. Each drug in the RxNorm database
receives a RxNorm concept unique identifier
(RxCUI). The RxCUI is normalized to a numeric
code that computers are able to parse [42].

DDIs are determined pairwise, using the
RxNorm RxCUI code for each of the two drugs.
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The RxCUIs identify the specific brand of medi-
cation (if supplied by the participant), or their
generic form (if no brand name was supplied).
uMH’s bioinformatics platform has a Represen-
tational State Transfer (REST) open application-
programming interface (API) to the RxNorm
database. Results are cached to speed processing.

DDI priority was derived from the Lexicomp
rating system [11]. Lexicomp’s DDI risk-rating
scale stratifies risk to provide medical profes-
sionals with relevant information about the
potential urgency associated with each interac-
tion. The informatics platform examines all
DDIs. Those that have a rating of C or above are
identified to physicians in uMH’s reports as
clinically significant. Those with a rating of D or
X are considered high-priority DDIs, as these
drug combinations are contraindicated.

Drug–Genome Interactions

uMH’s platform mines publicly available data-
bases to check for DGIs in each individual.
Individuals’ raw data files of genomic informa-
tion were collected from consumer-focused
companies such as 23andMe or Ancestry.com.
Alternatively, a full-exome VCF file of genomic
data can be read. The platform analyzes more
than 2000 single nucleotide polymorphisms
(SNPs) per individual, some of which pertain to
DGIs, and others are used to quantify the genetic
risk of AD as well as other genetic diseases.

DGI information was drawn from three
sources of pharmacogenomic information: the
Clinical Pharmacogenetics Implementation
Consortium (CPIC) effort [43], DrugBank
[13, 44], and SNPedia’s SNP and genoset com-
pilations [45, 46]. DGIs are looked at in two
categories: genetics that influence how enzymes
metabolize each drug, and relationships
between specific genes and drugs. Each medi-
cation a person is currently taking is compared
against a table of genes that affect it, and these
genes are, in turn, compared to those in the
person’s genome. CPIC rates each DGI on a
scale from A to D, where prescribing action is
recommended for levels A or B, but not neces-
sarily for levels C or D. No DGI priorities are
assigned in the DrugBank or SNPedia databases.

Anticholinergic Burden

ACB is measured using the ACB scale. This scale
was created by expert consensus to rank each
medication with known anticholinergic activity
from high to low. Each drug that has anti-
cholinergic properties is assigned a score of 1–3
depending on the severity. The list is currently
comprised of 195 different medications [19, 21].

Drugs with possible ACB are assigned a value
of 1, and those with definite anticholinergics
are given a value of 2 or 3. To get the total ACB
score for a patient, the value attributed to each
medication is summed. Each point a patient has
on the ACB scale has been correlated to a
decline in mini-mental state examination
(MMSE) score of 0.33 over 2 years [21].

The use of the ACB scale in clinical practice is
burdensome and challenging, which limits its
use in physicians’ offices. Although some elec-
tronic health systems do flag drugs with ACB,
most physicians would have to look up the drugs
and their ratings. Hospitals and care homes are
most likely to use the scale. The scale is often used
for research purposes as well [47–51].

uMH’s platform examined each medication
being taken by a person, and determined the ACB
score for each. A score (0 through 3) is assigned to
each current medication. The cumulative score
was calculated, and an estimate was made of how
much these drugs might be lowering someone’s
MMSE score. Definite ACBs (those with a score of
2 or 3) are tabulated, as those can directly con-
tribute to cognitive decline. A meta-review of
ACB medications, which are implemented in this
informatics system, can be found in ‘‘Anti-
cholinergic burden quantified by anticholinergic
risk scales and adverse outcomes in older people:
a systematic review’’ [19].

Depression-Inducing Drugs

DIDs were identified using ‘‘Prevalence of Pre-
scription Medications with Depression as a
Potential Adverse Effect Among Adults in the
United States’’ [30]. The DIDs listed here were
coded into uMH’s informatics platform so that
each person’s medication list could be checked
against this published list by the algorithms.
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Output

Each person’s information was analyzed by the
informatics platform and compared to stan-
dardized databases, peer-reviewed publications,
and reference tables to generate treatment rec-
ommendations. Databases and reference
tables used were sourced from the Centers for

Disease Control, FDA, NIH, DrugBank, and the
Online Mendelian Inheritance in Man (OMIM)
catalogue. The information in these databases
and tables relates to SNPs, DDIs, DGIs, drug
indications, and diagnostics.

Along with treatment recommendations, the
informatics platform also looks for any and all
drug interactions or potential ADRs (see Fig. 1).

Fig. 1 Example report: medication interactions
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Separate care plan reports generated by the
software are optimized for the physician, the
person under treatment, and their coaching
team—with the goal of suggesting what can best
be achieved in a clinical setting in the long-
term, taken in three-month segments.

Statistical Analysis

All statistical analyses were performed using SAS
University Edition. Significance was determined
using a 95% confidence interval.

Power calculations for independent, two-
sided t tests were completed to compare popu-
lation means. Either pooled or Satterthwaite
P values were used based on equality of variance
testing.

Means, standard deviations, and frequencies
were established using SAS. One-way analysis of
variance (ANOVA) testing was completed to
compare mean values between independent
groups with categorical and continuous analysis
variables. Linear and multiple linear regression
models were completed for continuous
response variables and singular or multiple
continuous explanatory variables.

RESULTS

Of the 295 people analyzed in this group, 97.59%
of them were on at least one medication, with an
overall mean of 11.5 medications per person;
83.66% were on 5 or more medications (see
Tables 3, 4). No significant differences were
found between the total number of medications
for people with normal cognitive status versus
those with cognitive decline.

A higher percentage of people with cogni-
tive decline were taking medications in all the
drug categories reviewed: neuroactive medica-
tions, anticholinergic drugs, and DIDs. Those
with cognitive decline also took more medi-
cations for these drug classes compared to
those with no cognitive decline (see Tables 5,
6, 7).

A total of 102 DGIs, 3642 DDIs, and one
high-priority DDI were found in this popula-
tion. Only ten people on medications did not
have any observed DDIs or DGIs. There was a
significant increase in the number of DDIs as
the number of medications per person increased
(P value\ 0.0001; see Fig. 2).

Table 3 Medication totals

Cohort Mean (SD) Min. Max. N % of population

All 11.52 (8.77) 0 67 294 97.59

Cognitively normal 12.88 (10.26) 0 66 108 95.41

Demented 11.30 (9.19) 0 67 109 97.22

Table 4 Number of patients on medication

Cohort Medications N % of population

All Total 287 97.59

5 ? 240 83.66

Cognitively normal Total 103 95.41

5 ? 82 75.97

Demented Total 106 97.22

5 ? 93 85.3
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Neuroactive Medications

A total of 97.23% of people were on at least one
neuroactive medication, with a mean of 2.82
medications per person. Females were on a sig-
nificantly higher amount of neuroactive medi-
cations than males (3.03 vs. 2.55, P value 0.02;
see Table 5). Those with cognitive decline were
also on more neuroactive medications than
individuals with normal cognition (3.00 vs.
2.16, P value 0.0004; see Table 5).

Anticholinergics

Of the population, 65.86% were on one or
more anticholinergic drug. There was a

significant difference in the ACB score between
individuals with cognitive decline than those
without (2.39 vs. 1.28, P value 0.01). Females
were also placed on more anticholinergic drugs
than males (1.67 vs. 1.13, P value 0.002), and
had a higher ACB score (2.50 vs. 1.71, P value
0.006; see Table 5).

Depression-Inducing Drugs

Females were on a significantly higher number
of DIDs than males (1.34 vs. 0.99, P value 0.01).
In total, 60.98% of the overall population were
on DIDs, with a mean of 1.19 medications per
person (see Table 5).

Table 5 Medication categories

Cohort Variable Mean (SD) Min. Max. % of population

All Neuroactive 2.82 (2.02) 0 11 97.23

ACBs (count) 1.43 (1.48) 0 7 65.86

ACBs (score) 2.15 (2.47) 0 12 NA

DIDs 1.19 (1.31) 0 7 60.98

Female Neuroactive 3.03 (2.15) 0 11 98.75

ACBs (count) 1.67 (1.55) 0 7 74.22

ACBs (score) 2.50 (2.62) 0 12 NA

DIDs 1.35 (1.39) 0 7 66.04

Male Neuroactive 2.55 (1.83) 0 9 95.31

ACBs (count) 1.13 (1.34) 0 6 55.47

ACBs (score) 1.71 (2.20) 0 10 NA

DIDs 0.99 (1.19) 0 5 54.68

Cognitively normal Neuroactive 2.16 (1.56) 0 7 95.47

ACBs (count) 0.85 (1.06) 0 4 54.55

ACBs (score) 1.28 (1.66) 0 6 NA

DIDs 0.88 (1.11) 0 5 54.55

Cognitive decline Neuroactive 3.00 (2.07) 0 10 97.25

ACBs (count) 1.67 (1.58) 0 7 73.39

ACBs (score) 2.39 (2.61) 0 12 NA

DIDs 1.31 (1.46) 0 7 63.3

ACB anticholinergic burden, DIDs depression-inducing drugs
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DISCUSSION

The results of this work show that older popu-
lations have a high medication burden. Patients
had an average of ten DDIs alone. The mean
duration of a physician visit in the United States
is 21.07 min. [52], most of which is spent dis-
cussing a person’s current health and not their
medication regime. The numbers presented
here as well as in other publications show that

physicians and patients need more support to
ensure medication regimes are safe.

Those with cognitive impairment face an
even higher burden than the average elderly
patient, taking more medications that can
adversely impair their cognitive abilities and
mood.

Females in this population were placed on a
higher number of neuroactive and mood-alter-
ing drugs. Females are already at a higher risk of
developing AD [53–55], nearly two thirds of AD
patients are women [56]. While our research
cannot say if a higher risk of cognitive decline
results in more medications or a more complex
medication regime, it is apparent that females
are at greater risk of drug interactions and ADRs.

With the growing elderly and AD popula-
tions, medication management for polyphar-
macy is a need that grows direr every year.
Studies have shown that adding a medical pro-
fessional with the sole job of medication review
to reduce the use of ineffective medications
increases patient safety [1], but this remains

Table 6 Drug interactions

Cohort Variable Mean (SD) Min. Max. % of population

All DGIs 0.63 (1.11) 0 6 34.82

DDIs 10.70 (10.73) 0 72 93.08

High-priority DDIs 0.004 (0.06) 0 1 0.36

Female DGIs 0.59 (1.05) 0 5 32.81

DDIs 10.90 (11.21) 0 72 90.58

High-priority DDIs 0.00 (0.00) 0 0 0

Male DGIs 0.66 (1.17) 0 6 36.63

DDIs 10.45 (10.11) 0 51 95.14

High-priority DDIs 0.01 (0.09) 0 1 0.83

Cognitively normal DGIs 0.66 (1.20) 0 6 34.44

DDIs 8.13 (7.77) 0 33 81.53

High-priority DDIs 0.01 (0.10) 0 1 0.97

Cognitive decline DGIs 0.47 (0.98) 0 6 34.82

DDIs 12.13 (12.46) 0 72 93.21

High-priority DDIs 0.00 (0.00) 0 0 0

DGIs drug–genome interactions, DDIs drug–drug interactions

Table 7 Drug interactions for patients taking
5 ? medications

Variable Mean (SD) Min. Max.

DGIs 0.61 (1.14) 0 6

DDIs 12.19 (10.89) 0 72

High-priority DDIs 0.00 (0.06) 0 1

DGIs drug–genome interactions, DDIs drug–drug
interactions
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unrealistic in the real world due to cost and
personnel constraints. CDSS does not face the
same concerns though.

uMH’s CDSS was able to identify a multitude
of polypharmacy problems that individuals are
currently facing. With the added knowledge
that this type of algorithmic analysis can pro-
vide, physicians will have the tools and infor-
mation needed to amend a person’s
medications to avoid interactions and ADRs,
and to more closely monitor patients for
expected reactions.

While the use of electronic medical records
(EMRs) is becoming more prevalent in large
hospitals and even private practices, it does not
mean that physicians are taking more actions to
prevent drug interactions in their patients.
Studies have shown that between 33% and 96%
of medication-related EMR alerts are overridden
and ignored [57]. This is referred to as ‘‘alert

fatigue.’’ Even clinically significant alerts are
being ignored [57, 58].

The reports generated by uMH’s informatics
platform do not allow physicians to dismiss
alerts, as it is provided in an un-editable PDF
format as opposed to a dismissible alert in an
EMR. uMH’s report format allows for review of
the recommendations and findings before a
patient visit, and presents alerts and recom-
mendations in a consistent format, allowing
physicians to focus on whatever piece of the
review is relevant at the time and return to
others later.

The population presented here was com-
pared to the National Alzheimer’s Coordinating
Center’s (NACC) database to check how closely
they resemble a more generalized population.
Only those aged 65 and older in the NACC
database were used to match the age range for
the population presented here. We found that
our population was comparable in both educa-
tion, BMI, and age at visit. uMH’s population
was on more total medications than those in
the NACC’s database (see Table 8).

CONCLUSIONS

This informatics platform has immense poten-
tial for use in clinical practice and helps fulfill
the need of increasing patient medication
regime safety. It could be further improved by
the addition of actionable recommendations for
how physicians can safely reduce the medica-
tions causing interactions and ADRs. These
recommendations could include stopping
medications (with information on how to safely
wean patients off specific drugs), dosage chan-
ges based on precision medicine, and formulary

Fig. 2 Comparing number of medications to number of
DDIs

Table 8 Comparative normative data

Variable uMH data, mean (SD) NACC data, mean (SD)

Education (years) 16.11 (3.48) 15.01 (3.54)

Total medications 11.53 (8.83) 5.77 (3.76)

BMI 26.45 (5.17) 26.62 (5.08)

Age (years) 75.51 (7.31) 75.72 (6.88)

BMI body mass index
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alternatives that would provide the same phar-
maceutical benefit without the potential for
interactions.
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